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INTRODUCTION

Depleting resources of conventional energy 
sources, with constantly growing fuel demand and 
usage in many sectors of economy, industry and 
transportation, result in a concentration of research 
centres on improving technologies of obtaining 
energy from renewable sources and on increas-
ing its application on the global scale [Kacprzak 
et al. 2012]. It is estimated that the usage of bio-
technological processes will positively influence 
the improvement of our country energy balance as 
well as considerably decrease natural environment 
pollution [Ledakowicz and Krzystek 2005].

Biogas is one of the most important sources 
of renewable energy. Methane-rich biogas is a 
perfect fuel to produce electric and thermal en-
ergy [Brudniak et al. 2013; Lewandowski 2007; 
Schulz 2004]. Biogas production includes also 
advantages to the environment and may generate 
more income for farmers [Kazimierowicz 2014; 
Kopiński et al. 2011]. Many kinds of biomass 
may be used to produce biogas [Gradziuk 2003a; 
Kościk and Kowalczyk-Juśko 2004]. Energy 
crops can be an excellent source. They are char-
acterised by a big annual growth. The majority of 
them grows best on fertile soil, however, with the 
use of proper technologies, it is possible to grow 
them on low-quality soli, wastelands and brown-
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fields [Romanowska-Duda et al. 2007, 2009]. It 
is advised to grow energy crops on soil fertilised 
with treated sludge from municipal sewage treat-
ment plants [Grzesik and Romanowska-Duda 
2008; Romanowska-Duda and Grzesik 2010a,b].

Production of biomass for energy purpos-
es may be a chance for crops diversification as 
well as for the development of farming in Poland 
[Roszkowski 2003]. It may also contribute to de-
crease the excess of some plants grown for food 
[Gradziuk 2003b; Gradziuk and Szmidt 1998; 
Jeżowski 2001, 2003; Majtkowski 1998].

The aim of the research was to define the 
amount and composition of biogas obtained as a 
result of giant Miscanthus fermentation in order 
to indicate that it is a plant suitable for biogas pro-
duction.

METHODS

The material used in the experiment was gi-
ant Miscanthus, which belongs to the Poaceae 
(true grasses). It is a hybrid of Amur silver grass 
(Miscanthus sacchariflorus) and Chinese silver 
grass (Miscanthus sinensis). This is an impressive 
clump grass originating from South-East Asia. 
Giant Miscanthus is a C-4 photosynthetic plant 
and, therefore it is characterised by greater carbon 
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dioxide (CO2) absorption. It grows very fast and 
due to plantation longevity (15–20 years) as well 
as big biomass productivity, it is recognised as a 
valuable, alternative source of energy (Sørensen 
et al. 2008, Zawadzka et al. 2010).

The experiment was conducted three times. 
The substrate was crushed mechanically with the 
use of Robot Coupe Blixer. The content of dry, 
mineral and organic matter in the plant was de-
scribed and averaged. Biomass was introduced 
into respirometric sets Oxi-Top Control type 
by WTW company, inoculated with activated 
sludge, in which the amount and composition of 
gas products of metabolism were measured. The 
equipment was composed of reaction chambers 
connected hermetically with metering and record-
ing instruments. They recorded changes in par-
tial pressure in the measuring chamber, caused 
by biogas production anaerobic processes made 
by microorganisms. The entire measurement set 
was placed in thermostatically controlled cabi-
net with hysteresis not exceeding ±0.5 °C. The 
measurements were conducted in the temperature 
of 36 °C. 25 cm3 of sludge was introduced to the 
reaction chambers and calculated, on the basis of 
the content of dry organic mass, amount of plant 
substrates in the amount equivalent to the load A 
= 2.0 kg s.m.o./m3. Then, trials were purged with 
nitrogen. Sets were placed in thermostatically 
controlled cabinet for 20 days and the pressure 
in the reaction chamber was measured every 15 
min. Three days before the end of the measure-
ment, 30% sodium base NaOH was introduced 
into a special container inside the reaction cham-
ber. It allowed to precipitate carbon dioxide (CO2) 
from the gas phase. Pressure drop in the reaction 
chamber corresponded to the content of carbon 
dioxide, whereas the content of methane was re-
sponsible for the remaining pressure head.

Ideal gas equation was the basis for calcula-
tions in respirometric research: 
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𝑛𝑛 = 𝑝𝑝 ∙ 𝑉𝑉
𝑅𝑅 ∙ 𝑇𝑇 

n – number of gas moles [mol],  
p – gas pressure [Pa],  
V – gas volume [m3],  
R – gas constant [8,314 J/mol·K],  
T – temperature [K].  
 

The content of carbon in the gas phase was described using the formula: 

𝑛𝑛𝐶𝐶𝐶𝐶2 + 𝑛𝑛𝐶𝐶𝐶𝐶4 =
𝑝𝑝1 ∙ 𝑉𝑉𝑔𝑔
𝑅𝑅 ∙ 𝑇𝑇 ∙ 10−4 

𝑛𝑛𝐶𝐶𝐶𝐶2 + 𝑛𝑛𝐶𝐶𝐶𝐶4 – the number of carbon dioxide and methane moles [mol],  
p1 – the difference in the gas pressure in the research container at the beginning and at the end 
of the experiment caused by oxygen consumption and absorption of the forming of CO2 [hPa], 
Vg – volume of the gas phase in the measuring chamber [ml],  
R – gas constant [8,314 J/mol·K],  
T – incubation temperature [K],  
10-4 – conversion coefficient.  
 

The content of carbon dioxide in the gas phase was calculated using the formula: 

𝑛𝑛𝐶𝐶𝐶𝐶2 = [
𝑝𝑝1 ∙ 𝑉𝑉𝑔𝑔 − 𝑝𝑝2 ∙ (𝑉𝑉𝑔𝑔 − 𝑉𝑉𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶)

𝑅𝑅 ∙ 𝑇𝑇 ] ∙ 10−4 

𝑛𝑛𝐶𝐶𝐶𝐶2 – number of created carbon dioxide moles [mol],  
p2 – the difference in gas pressure in the proper research container at the end of the experiment 
minus the pressure at the beginning of the experiment minus the pressure in the blank test after 
NaOH solution was added [hPa],  
VNaOH – the volume of NaOH solution [ml].  
 

The content of methane in the gas phase was calculated: 
𝑛𝑛𝐶𝐶𝐶𝐶4 = (𝑛𝑛𝐶𝐶𝐶𝐶2 + 𝑛𝑛𝐶𝐶𝐶𝐶4) − 𝑛𝑛𝐶𝐶𝐶𝐶2 
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Biogas production was determined on the ba-
sis of respirometric research. Pressure measure-
ments were conducted by analyser in 15 minutes 
intervals and pressure measurements inside the 
chamber allowed to define the process rate. Ap-
plying the programme Statistica 8.0, reaction 
rate constants were fixed on the basis of the ex-
perimental data obtained by nonlinear regression 
method. Iterative method was used, i.e. in every 
iterative step, the function is replaced by a linear 
differential in relation to the determined parame-
ters. By the determined parameters, φ2 coefficient 
of agreement was assumed as a measure of curve 
fitting into the experimental data. This coefficient 
is a ratio of the sum of squares of the deviations of 
values calculated on the basis of the determined 
function from the experiment values to the sum of 
squares of the deviations of experimental values 
from the mean. The smaller φ2 coefficient value, 
the better adjustment of the model. Such an ad-
justment of the model to the experiment points 
was assumed by which the coefficient of agree-
ment did not exceed 0.2.



141

Journal of Ecological Engineering  vol. 16(4), 2015

RESULTS AND DISCUSSION

The results of conducted research are com-
pared in Table 1. Using fresh giant Miscantus 
biomass as a substrate to the process of methane 
fermentation, 0.30 dm3/g s.m. of biogas were ob-
tained in the experiment conditions. The desired 
component, i.e. methane, constituted 50.4% of its 
content. 

Dinuccio et al. 2010 researched the capacity 
of biogas production and the content of methane 
in such substrate as corn, grapes, straw, rice or 
tomato skins. In all cases, the content of meth-
ane in biogas stabilised up to the value from 50% 
to 60%, therefore, it was comparable to the giant 
Miscanthus case. 

Klimiuk and others researched silage biogas-
sing efficiency of four species of plants: corn, Sor-
ghum, giant Miscanthus and Amur silver grass. 
Due to the high amount of lignin in Miscathus, 
biogassing efficiency of these plants was on a 
lower level than in the case of corn and Sorghum, 
and in the case of giant Miscanthus it amounted 
to 48.2%.

Grala et al. 2011 received 0.30 dm3/g s.m. of 
biogas with 50.4% of methane content, as a result 
of a similar experiment. Comparable tendency may 
be seen in the research described in this article.

CONCLUSIONS

The use of giant Miacanthus as a substrate in 
the process of methane fermentation, aiming at 
biogas acquisition, is connected with many posi-
tive aspects. Created biogas may be an alternative 
to non-renewable fossil fuels. Miscanthus can be 
a great substitute to corn silage, used the most 
widely, because from 1 hectare of crops may be 
obtained a lot more cellulose biomass than from a 
biomass containing starch or from oil plants from 
which only particular parts and not the whole 
plants are used. Additional advantage is the fact 
that lignocellulosic biomass may be stored for 
many years without losing its energy content.
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